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Geometric quantization
of the multidimensional Kepler problem
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Abstract. The geometric quantization scheme of Czyz and Hess is applied to the
(n — 1)-dimensional quadric in complex projective space. As the quadric is the or-
bit manifold of the n-dimensional Kepler problem and the geodesic flow on the
n-dimensional euclidean sphere, we thus obtain the quantum energy levels and
their multiplicities for these Hamiltonian systems.

1. INTRODUCTION

The n-dimensional Kepler problem in the Hamiltonian system (M, w, H)
where M = (R"\{0}) x R” with coordinates g, . . . q,, p, - - - p, and

1 1
¢} w=dpAdq; H=—|p|*— — .

2 la|
Using stereographic projection, Moser [1] has shown the equivalence of the regu-
larized problem (1) with the geodesic flow on the sphere S® ={¢eR"*1;|&| = 1}
(see also [2] ch. IV §6). The geodesic flow on 8" is the Hamiltonian system
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(P, 0,G) where P ={§,ne R"* ;| £| = 1,¢¢,7) =0} and
1
2 o = d§Adn; G:5|z|2|n|2

where we consider o and G restricted to P.

The orbits of problem (2) are the geodesics on S”, i.e. the great circles. Those
orbits which lie on a fixed energy hypersurface G = ¢ (fixed velocity), are para-
metrized by the points of the grassmanian of oriented 2-planes in R” 1. This
Grassmanian is the compact Hermitian symmetric space SO(n + 1)/SO(n — 1) x
x SO(2), which is known ([3] ch. XI) to be isometric to the nonsingular (n — 1)-
-dimensional complex quadric 0, 1 With the natural Kahler metric.

n+ i
3 Q, 1={Gp....z,,)eCP": E Zj2=0'
i=1

In the present paper we apply the modified geometric quantization scheme
of Czyz [4] and Hess [5] to the Kepler manifold Q, _; for n>3. In Sect. 3 we
use algebro-geometric methods to determine quantum line bundles on @, ,
and compute the dimensions of their spaces of holomorphic sections. This allows
us to prove:

THEOREM 1. The energy spectrum of the n-dimensional Kepler problem is

1
(4) Ey=—Z W+~ 3)/2)72

with corresponding multiplicities

(5)

2N+n—3 N+n—3
T

n—1

where N=1,2,..., .
This is an immediate consequence of

THEOREM 2. The energy spectrum of the geodesic flow on S"is

1
(6) v=3 (N + (n —3)/2)*

with corresponding multiplicities
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(7

IN+n—=3 IN4+n—3
= )

n—1

where N=1,2,..., .
For the proofs see Sect. 4.

Remark 1. In the case when n = 3 the Hamiltonian system (1) was quantized
geometrically by Simms [6], [7], who applied the Kostant - Souriau theory
to @Q,. He computed the multiplicities via the Riemann - Roch - Hirzebruch
theorem for complex surfaces. In Sect. 3 we use for this purpose simpler algebro-
geometric devices, which allow us to avoid the computational problems arising
in the Riemann - Roch - Hirzebruch formula for higer dimensions.

Remark 2. The quasiclassical energy spectrum and multiplicities for the problem
(2) were discussed by Weinstein [8]. Later [i [9] calculated the exact quasiclassical
energy levels and multiplicities for (2), which agree exactly with the values we
have obtained by geometric quantization.

Remark 3. Curiously, the technical details of our «cohomologicaly computation
of the multiplicities in Sect. 3 are quite parallel to the «classical» computation
of the multiplicities of the classical energy levels, i.e. with the standard computa-
tion of the dimensions of the spaces of homogeneous harmonic polynomials of
a given degree in R" *! (see e.g. [10] ch. IID).

Remark 4. The reduction to the «orbit manifold» @, | amounts in quantum-
-mechanical terms to transition from the Schrodinger to the Heisenberg picture
[11]. Rawnsley [12] discusses geometric quantization of problem (1) in terms
of a Kahler structure on the space T*S".

Remark 5. Obviously perturbations destroy the high symmetry of the pro-
blem. In particular we do not have orbit manifolds. Thus it seems that this me-
thod does not apply even to complitely integrable cases as the geodesic flow
on an elipsoid.

2. PRELIMINARIES

We consider hypersurfaces of constant energy € on the phase space P.

(8) P ={(,neP:G(n) =€}
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Denote by o, the restriction of the symplectic form o to the submanifold P.

) 2
The hypersurface

P ={(, meR™ ' x R" L] E[=|n|=1,(5m =0} =
2
= SO(n + 1)/SO(1 — 1)

is the Stiefel manifold of oriented orthonormal 2-frames in R"*1 The orbits
of the geodesic flow on P, are exactly the orbits of the action of SO(2) given by
k3

cost sint

(&, n) — (¥ cost + nsint, — £ sint + 7 cost) for ( )650(2)

—sint cost
Thus the factor space of this action (the orbit manifold) is

SO + H/SO(n—1)xS0(2)=Q

n-1-°

We denote the natural projection by Il :P1/2—>Q"~1. The projection He P>Q n1
is obtained from Il by scaling the n component; as P, is obtained from P, by
2

9 t—t  n— V2en.

We scale the invariant Kahler metric g on @, _, so that the corresponding Kahler
form £2 (see Sect. 3) becomes the invariant representative of the first Chern class
of the hyperplane section bundle on @, _,. From the construction of the metric

g ([3] ch. XI ex. 10.6) it is obvious that the forms II*Q and g, on P, differ by
7 2
a constant factor. We assume (by an appropriate choice of «physical» constants)

that
(10) n*Q =o0,.
2

Formulas (9) and (10) imply
an o€=H€*(\/2eQ)=H€*(QE).

Moser [1] has introduced a symplectomorphism between the phase spaces
(M, w) and (P, 0), which maps an energy hypersyrface M, = {(p,q)eM; H(p,q) =
= E}onto a hypersurface P_for

1
(12) E=——
4e
(see also [2] ch. IV 6).
We summarise the elements of the modified geometric quantization scheme of



GEOMETRIC QUANTIZATION OF THE MULTIDIMENSIONAL KEPLER PROBLEM 21

Czyz [4] and Hess [5] which will be used in our proof.

Let X be a compact Kahler manifold with Kahler form 4. By definition, a
quantum line bundle L on (X, /) is a holomorphic line bundle L, whose first
Chern class cl(L) satisfies

(13) ey(L) = [h] = ¢, (X)/2.

The corresponding quantum Hilbert space is (as a linear space), the space H(X, L)
of holomorphic sections of L. In our case (X, #) will be (Qn—l’ QE). The existen-
ce of a quantum line bundle is obviously a condition on e, which determines
the energy spectrum. The dimensions of the corresponding quantum Hilbert
spaces are the multiplicities.

3. HOLOMORPHIC LINE BUNDLES ON THE QUADRIC

On the n-dimensional complex projective space CP"” we have the standard
Fubini - Study Kahler metric (see e.g. [13] ch. 1), with Kahler form

i n
(14) Q:z—”aalog|z|2; |z|2=sz?]..
=0
The form (14) belongs to the first Chern class of the hyperplane section bundle
on CP" ({13] ch. 1), and generates H2(CP", Z).

The induced Kahler structure on Qn_1 embedded in CP" as in formula (3)
will be denoted also by £2. It coincides with the invariant Kahler structure on
the symmetric space SO(n + 1)/SO(n — 1) x SO(2), (see [3]). By functoriality
[§2] is the first Chern class of the hyperplane section bundle on Qn_l.

In the following we assume that n > 3 and write Q instead of 0, _,.

By the Lefschetz hyperplane section theorem ([13] ch. 1) we have

(15) HXQ,Z)=HXCP",Z)=Z
moreover, the (class of the) form 2 generates HZ(Q, Z). Also
(16) HYQ,0)=H*Q,0)=0
where @ is the structure sheaf of Q.
Denoting by (0* the sheaf of nonvanishing holomorphic functions on Q, the
exact exponential sequence on Q is:

0 —Z— 0—250*—0.

The corresponding exact cohomology sequence is



22 1. MLADENOV, V. TSANOV

(17 HYQ, O)— HY(Q; 0*) — H*(Q,Z) — H*Q, ).
By (16) the extreme right and left terms in (17) vanish, so we have
(18) HYQ, 0%) =HXQ,2) = Z.

Thus we may identify the group of (equivalence classes of) holomorphic line
bundles on Q (HI(Q, 0*)) with Z. Moreover each holomorphic line boundle
L is a tensorial power of the hyperplane section bundle. We denote the k™
power by L, and by (18) cl(Lk) =kQ.

Probably the shortest way to compute the dimensions of the space HQ, L)
is to use the exact sequence of sheaves

(19) 0— O, (L xL )= 0, L) — Oy(L;) —> 0

where the mapping « is multiplication of sections of Lk_.2 by the polynomial
fo z ].2 defining the quadric Q in CP”, and r is the restriction mapping.
i=
The corresponding cohomology exact sequence begins with
0— H%CP" L, _,) — HYCP", L) — H%Q, L) —
(20)
— HYCP", L, _,).
The last term on (20) is zero by the Kodaira vanishing theorem ([13] ch. 1).
Thus we get:

dim H%(Q, L,) = dim HO(CP", L,) — dim H*(CP", L, _,)

n+k n+k-—2
- n n
the last two numbers being the dimensions of the spaces of homogeneous poly-

nomials in n + 1 variables of degree k and k — 2 respectively.
We summarise the above in the following.

21

PROPOSITION. The group Pic(Q,_,) of all holomorphic line bundles on the
quadratic an1 is isomorphic to H2(Qn_1,Z)zZ. For the bundle L, with
c (L) =kQ, keZ* we have

dim H%Q,,_, L) =

2k+n—1 (n+k—2)
n—2

n—1

The case k < 0 is trivial.
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4. PROOFS OF THE THEOREMS

In order to apply formula (13) we need the first Chern class of @, _,. If KQ
is the canonical bundle of Q, then cl(Q) :—CI(KQ) and we may apply the
adjunction formula ([13] ch. 1), to the smooth hypersurface Q of degree 2
in CP". We obtain

22) Cl(Qn_l):(n—l)Q.

Now we take an arbitrary holomorphic line bundle L, ; on @, ;. The space
HO(Q,LN_I) is not zero for N=1,2,... . We combine formulae (11), (13)
and (22) to get

n—1

oLy )=WN—1Q=V2eQ— Q ie.

(23)
n—1

V2e=(N—1)+

This gives exactly formula (6) for €n- Formulae (12) and (23) give formula (4).
Formulae (5) and (7) for the multiplicity follow directly from the proposition
in Sect 3.
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