
JGP - Vol.2, n. 1, 1985

Geometric quantization
of the multidimensional Kepler problem
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Abstract. The geometricquantizationschemeof CzyzandHessis applied to the
(n — 1)-dimensionalquadric in complexprojectivespace.As thequadric is theor-
bit manifold of the n-dimensionalKepler problemand thegeodesicflow on the
n-dimensionaleuclidean sphere,we thus obtain the quantumenergy levelsand
their multiplicitiesfor theseHamiltoniansystems.

1. INTRODUCTION

The n-dimensional Kepler problem in the Hamiltonian system (M, w, H)
whereM = (Re’ \{ O}) x R’

1 with coordinatesq
1 . . q~,p1.. . p~and

1 1
(1) w=dpAdq; H=—tpI

2——
2 IqI

Usingstereographicprojection,Moser[1] hasshownthe equivalenceof theregu-
larized problem (1) with the geodesicflow on the spheresn={~�R~’;I~I= 1}

(see also [21 ch. IV §6). The geodesicflow on 5fl is the Hamiltonian system
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(P, a, G) whereP={E, 1?ER’~’;I~ = 1,(~) = 0}and

(2) a=dEAdr~ G=
2

where we consideraand G restrictedto P.

The orbits of problem (2) arethe geodesicson S”, i.e. the greatcircles.Those

orbits which lie on a fixed energyhypersurfaceG = e (fixed velocity), are para-

metrized by the points of the grassmanianof oriented 2-planesin R”~
1.This

Grassmanianis the compactHermitian symmetricspaceSO(n + 1)/SO(n— 1) x

x SO(2), which is known ([3] ch. XI) to be isometric to thenonsingular(n — 1)-

-dimensionalcomplexquadricQ~—1 with thenaturalKahiermetric.

n-i-i

(3) Q~_
1= (zi,..., z~÷1)�CP’~:~ z?= 0

1= 1

In the presentpaperwe apply the modified geometric quantizationscheme

of Czyz [4] and Hess [5] to the Keplermanifold Qni for n >3. In Sect.3 we

use algebro-geometricmethods to determinequantum line bundles on

and computethe dimensionsof their spacesof holomorphicsections.This allows

us to prove:

THEOREM1. The energy spectrum of the n-dimensional Kepler problem is

(4) EN=——(N+(n_3)/2Y
2

with correspondingmultiplicities

2N+n—3 N+n—3

(5) n—i N1 )
whereN=l,2

This is animmediateconsequenceof

THEOREM 2. The energyspectrumof thegeodesicflow on S~is

(6)

with correspondingmultiplicities
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2N+n—3 N+n—3
(7)

n—I N1

whereN= 1,2

FortheproofsseeSect.4.

Remark1. In the casewhen n = 3 the Hamiltonian system(1) was quantized
geometrically by Simms [61, [7], who applied the Kostant - Souriau theory

to Q2~He computed the multiplicities via the Riemann- Roch - Hirzebruch

theoremfor complex surfaces.In Sect. 3 we usefor thispurposesimpler algebro-

geometricdevices, which allow us to avoid the computationalproblemsarising
in the Riemann- Roch - Hirzebruchformula forhiger dimensions.

Remark2. The quasiclassicalenergyspectrumand multiplicities for the problem

(2) werediscussedby Weinstein[8]. Later Ii [9] calculatedthe exactquasiclassical
energy levels and multiplicities for (2), which agree exactly with the valueswe
haveobtainedby geometricquantization.

Remark3. Curiously, the technicaldetailsof our <<cohomological>>computation

of the multiplicities in Sect. 3 are quite parallel to the <<classical>>computation
of the multiplicities of the classicalenergylevels,i.e. with the standardcomputa-
tion of the dimensionsof the spacesof homogeneousharmonicpolynomialsof

a given degreein R’
5 i-’ (seee.g. 110] ch. III).

Remark4. The reductionto the <<orbit manifold>> amountsin quantum-
-mechanicalterms to transition from the Schrodingerto the Heisenbergpicture

[11]. Rawnsley [12] discussesgeometricquantizationof problem (1) in terms

of a Kahler structureon the spaceT*S~~.

Remark5. Obviously perturbations destroy the high symmetry of the pro-
blem. In particular we do not haveorbit manifolds. Thus it seemsthat this me-
thod does not apply even to complitely integrablecasesas the geodesicflow

on anelipsoid.

2. PRELIMINARIES

We considerhypersurfacesof constantenergye on the phasespaceP.

(8) P~={(~,t~)eP: G(E, 17) = e}.
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Denoteby u~the restrictionof thesymplecticform a to thesubmanifoldP1 -

Thehypersurface

P1={(~,77)eR’xR’~
1IEI=InI=l,(~,

77)=o}=

= SO(n + l)/SO(n — 1)

is the Stiefel manifold of oriented orthonormal 2-framesin R°+ ~, The orbits

of the geodesicflow on P1 are exactly the orbitsof theactionof SO(2) given by
2

cost sint
(~,77) —+ (~cost + 77 sint,— ~sint + i~cost) for . �SO(2)

— sint cost
Thus thefactorspaceof this action(the orbit manifold)is

SO(n+ l)/SO(n — 1) x SO(2) = Qn—i -

We denotethe naturalprojection by H : ‘~f2 ~ Q~1.The projectionfl,~: P~-* Q~-1
is obtainedfrom H by scaling the 77 component;as P~is obtained from P1 by

2

(9) ~ 17—~I~77.

We scalethe invariantKahler metric g on Qn —1 so that the correspondingKahler
form ~ (see Sect.3) becomesthe invariant representativeof thefirst Chernclass

of the hyperplanesectionbundle on Q~1.From the constructionof the metric
g ([31 ch. XI ex. 10.6) it is obviousthat the forms H ~ and a1 on P1 differ by

2 2
a constantfactor. We assume(by an appropriatechoice of <<physical>>constants)

that

(10)
2

Formulas(9) and(10) imply

(11)

Moser [11 has introduced a symplectomorphismbetween the phase spaces
(M, c~)and (F, a), which mapsanenergyhypersyrfaceME= {(p, q) cM;H(p,q) =

= E } ontoa hypersurfaceP for

(12)
4�

(seealso [21ch. IV 6).
We summarisethe elementsof the modified geometricquantizationschemeof
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Czyz [4] andHess[5] which will be usedin our proof.
Let X be a compactKahier manifold with Kahler form h. By definition, a

quantum line bundle L on (X, h) is a holomorphic line bundle L, whose first

Chernclassc
1(L) satisfies

(13) c1(L) = [h] —c1(X)/2.

The correspondingquantumHilbert spaceis (asa linearspace),thespaceH°(X,L)

of holomorphicsectionsof L. In our case(X, h) will be (Q~_1,~2). Theexisten-
ce of a quantum line bundle is obviously a condition on e, which determines

the energy spectrum. The dimensions of the correspondingquantum Hilbert
spacesarethe multiplicities.

3. HOLOMORPHIC LINE BUNDLES ON THE QUADRIC

On the n-dimensional complex projective space CP’~we have the standard
Fubini - StudyKahlermetric (seee.g. [13] ch. 1), with Kahler form

(14) cz=—~——a~1og~z~2;zI2=~IIz.?..
2ir /=0 / /

The form (14) belongsto the first Chern classof the hyperplanesectionbundle

on CP’~([13] ch. 1), andgeneratesH
2(CP’~,Z).

The induced Kahier structureon embeddedin CP~as in formula (3)
will be denotedalso by ~. It coincideswith the invariant Kahler structureon

the symmetric space SO(n+ l)/SO(n— 1) x SO(2), (see [3]). By functoriality
[~7] is thefirst Chernclassof thehyperplanesectionbundleon

In thefollowing we assumethat n > 3 andwrite Q insteadofQ~~
By theLefschetzhyperplanesectiontheorem([13] ch. 1) we have

(15) H2(Q,Z)—~rH2(CPt1,Z)=Z

moreover,the (classof the) form f2 generatesH2(Q,Z). Also

(16) H’(Q,&)=H2(Q, cP)=0

where~ is thestructuresheafof Q.
Denoting by ~!7* the sheafof nonvanishingholomorphicfunctions on Q, the

exactexponentialsequenceon Q is:

0 —~ Z —f (9 ~ ~p*

The correspondingexactcohomologysequenceis



22 1. MLADENOV, V. TSANOV

(17) H’(Q, (9)—~H’(Q;(9*) —~H2(Q,Z) —*H2(Q, (9).

By (16) theextremeright and left termsin (17)vanish,so we have

(18) H1(Q, (9*) = H2(Q,Z) = Z.

Thus we may identify the group of (equivalenceclassesof) holomorphic line

bundles on Q (H1(Q,(9*)) with Z. Moreover each holomorphic line boundle
L is a tensorial power of the hyperplane section bundle. We denotethe k~’~

powerby Lk, and by (18) cl(Lk) = k~.
Probably the shortestway to computethedimensionsof the space H°(Q,Lk)

is to usethe exactsequenceof sheaves

(19) 0 —+ x L
2) —~+ ~cpnk~ (9Q(Lk)_* 0

where the mapping a is multiplication of sectionsof Lk_2 by the polynomial

~ z/ defining thequadricQ in CP”, and r is the restrictionmapping.
The correspondingcohomologyexactsequencebeginswith

0 ~~+HO(CP0,Lk2) ~+HO(CP?~,Lk) —+H°(Q,Lk)
(20)

__~+Hl(Cpn, Lk_2).

The last term on (20) is zero by the Kodaira vanishing theorem([13] ch. 1).

Thuswe get:

dim H
0(Q, Lk) = dim H°(CP°,Lk) — dim H0(CP~, L~_

2)

(21)
— (n_+_k\_( n + k —2

n ) \ n

the last two numbersbeing the dimensionsof the spacesof homogeneouspoly-
nomialsin n + 1 variablesof degreek andk — 2 respectively.

Wesummarisethe abovein the following.

PROPOSITION. The group Pic (Q~1)of all holomorphic line bundles on the
quadratic Q~_1is isomorphic to H

2(Q~_
1,Z) Z. For the bundle Lk with

keZ~we have

2k+n—l n+k—2
dim H°(Q~_1,Lk) = —2

n—l n

The casek <0 is trivial.
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4. PROOFS OF THE THEOREMS

In order to apply formula (13) we needthe first Chernclassof Q~_1.If KQ

is the canonical bundle of Q, then c1(Q) = _-_c1(KQ) and we may apply the

adjunction formula ([13] ch. 1), to the smooth hypersurfaceQ of degree2

in GP~.Weobtain

(22) c1(Q~ ~ = (n — 1) ~.

Now we takean arbitraryholomorphic line bundle LN_l on Q~1.The space

II°(Q,L~1) is not zero for N = 1,2 We combineformulae (11), (13)
and (22) to get

n—i
~ i.e.

2
(23)

n—l

2

This gives exactly formula (6) for Formulae(12) and (23) give formula (4).
Formulae(5) and (7) for the multiplicity follow directly from the proposition

in Sect3.
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